
Tutorial Note XIII

1 An Application of the Riemann-Lebesgue Lemma: the Dirichlet Inte-
gral

Ih this section, as an application of the Riemann-Lebesgue lemma, we calculate the Dirichlet

integral ∫ ∞

0

sinx

x
dx = lim

R→∞

∫ R

0

sinx

x
dx.

We first note that the Dirichlet kernel:

DN(x) =
N∑

n=−N

einx =
sin (N + 1/2)x

sin(x/2)
,

satisfies that ∫ π

−π

DN(x) dx = 2π.

So ∫ π

−π

sin (N + 1/2)x

sin(x/2)
dx = 2π.

If we replace sin(x/2) by x/2, then∫ π

−π

sin (N + 1/2)x

x/2
dx = 2

∫ (N+1/2)π

−(N+1/2)π

sinx

x
dx.

So if we let N → ∞,

lim
N→∞

∫ π

−π

sin (N + 1/2)x

x/2
dx = 4

∫ ∞

0

sinx

x
.

So it remains to calculate the difference∫ π

−π

sin (N + 1/2)x

(
1

sin(x/2)
− 1

x/2

)
dx.

Note that
1

sin(x/2)
− 1

x/2
=

x/2− sin(x/2)

sin(x/2)(x/2)

is continuous on [−π, π]. So we can apply the Riemann-Lebesgue lemma and we have

lim
N→∞

∫ π

−π

sin (N + 1/2)x

(
1

sin(x/2)
− 1

x/2

)
dx = 0.
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Therefore, ∫ ∞

0

sinx

x
dx =

π

2
.

2 Decay of Fourier Coefficients: Continuation

First, we recall the conclusions about decay of Fourier coefficients listed in the last tutorial:

• If f is α-Hölder continuous, f̂(n) = O(1/|n|α);

• If f is bounded monotone, f̂(n) = O(1/|n|);

• If f is continuous, f̂(n) = o(1);

• If f is Ck, f̂(n) = o(1/|n|k).

In this section, we present their proofs. First, we note that the fourth conclusion is just a

corollary of the Riemann-Lebesgue lemma since

f̂ (k)(n) = (in)kf̂(n).

So we mainly prove the first two conclusions here. WLOG, we assume that n > 0. To see the

cancellations of e−inx, we return to Riemann sums. We have∫ 2π

0

f(x)e−inx dx ≈
N−1∑
k=0

e−in·2kπ/Nf

(
2kπ

N

)
2π

N
. (1)

For the first conclusion, if we take N = 2nl, then∫ 2π

0

f(x)e−inx dx ≈
2nl−1∑
k=0

e−ikπ/lf

(
kπ

nl

)
π

nl
.

An important observation is that

e−ikπ/lf

(
(k + l)π

nl

)
+ e−i(k+l)π/lf

(
kπ

nl

)
= e−ikπ/l

[
f

(
(k + l)π

nl

)
− f

(
kπ

nl

)]
.

Inspired by this, since
2nl−1∑
k=0

e−ikπ/lf

(
kπ

nl

)
π

nl
=

2nl−1∑
k=0

e−i(k+l)π/lf

(
(k + l)π

nl

)
π

nl
,

we have
2nl−1∑
k=0

e−ikπ/lf

(
kπ

nl

)
π

nl
=

1

2

2nl−1∑
k=0

[
e−ikπ/lf

(
(k + l)π

nl

)
+ e−i(k+l)π/lf

(
kπ

nl

)]
π

nl

=
1

2

2nl−1∑
k=0

e−ikπ/l

[
f

(
(k + l)π

nl

)
− f

(
kπ

nl

)]
π

nl
.
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So ∣∣∣∣∣
2nl−1∑
k=0

e−ikπ/lf

(
kπ

nl

)
π

nl

∣∣∣∣∣ ≤ πK
(π
n

)α

,

provided that |f(x)− f(y)| ≤ K|x− y|α. According to this idea, a neat proof is as follows:∣∣∣∣∫ 2π

0

f(x)e−inx dx

∣∣∣∣ = 1

2

∣∣∣∣∫ 2π

0

[f(x)− f(x+ π/n)]e−inx dx

∣∣∣∣
≤ πK

(π
n

)α

.

Moreover, this result is sharp for α ∈ (0, 1). Consider the lacunary Fourier series:
∞∑
k=0

2−kαei2
kx

for α ∈ (0, 1). It is obvious that its Fourier coefficients are O(1/|n|α). Next we show that it is

α-Hölder continuous. Since

|ei2kx − ei2
ky| ≤ 2 ∧ 2k|x− y|,∣∣∣∣∣

∞∑
k=0

2−kα
(
ei2

kx − ei2
ky
)∣∣∣∣∣ ≤

∞∑
k=0

2−kα
(
2 ∧ 2k|x− y|

)
≲ |x− y|α.

Next we prove the second conclusion. For (1), by summation by parts, we have
N−1∑
k=0

e−in·2kπ/Nf

(
2kπ

N

)
2π

N
=

N−2∑
k=0

Sk

[
f

(
2kπ

N

)
− f

(
2(k + 1)π

N

)]
2π

N

+ SN−1f

(
2(N − 1)π

N

)
2π

N
,

where

Sk =
k∑

l=0

e−in·2lπ/N .

Note that

Sk =
e−in·2(k+1)π/N − 1

e−in2π/N − 1
.

We have

|Sk| ≤
1

sin(nπ/N)
.

So ∣∣∣∣∣
N−1∑
k=0

e−in·2kπ/Nf

(
2kπ

N

)
2π

N

∣∣∣∣∣ ≤ 2π

sin(nπ/N)N
· 3M,

provided that |f | ≤ M . Let N → ∞, then we obtain that∣∣∣∣∫ 2π

0

f(x)e−inx dx

∣∣∣∣ ≤ 6M

n
.
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3 Bernstein Theorem

In this section, we prove the Bernstein theorem.

Theorem 3.1 (Bernstein)

If f is α-Hölder continuous, where α > 1/2, then
∑

n|f̂(n)| < ∞.

Proof. By the above conclusions about decay of Fourier coefficients, we have f̂(n) = O(1/|n|α),
which is not enough to prove

∑
n|f̂(n)| < ∞. So we need more delicate estimates. Our tool

is Parseval’s identity. To exploit the regularity of f , we consider f(x+ h)− f(x).

[f(x+ h)− f(x)]̂ (n) = (einh − 1)f̂(n).

By Parseval’s identity,
1

2π

∫ 2π

0

[f(x+ h)− f(x)]2 dx =
∑
n

|einh − 1|2|f̂(n)|2.

If h = π/2k,

|einh − 1|2 = 4 sin2
( nπ

2k+1

)
≥ 2

for n satisfying 2k−1 < |n| ≤ 2k. So

2
∑

2k−1<|n|≤2k

|f̂(n)|2 ≤ K2
( π

2k

)2α

,

provided that |f(x)− f(y)| ≤ K|x− y|α. By the Cauchy-Schwarz inequality,∑
2k−1<|n|≤2k

|f̂(n)| ≤ 2k/2 · K√
2
·
( π

2k

)α

≤ Kπα2(1/2−α)k.

Since α > 1/2, we have ∑
n

|f̂(n)| < ∞.
□

The contents of this tutorial note are mainly from the exercises of chapter 3 of Stein’s Fourier

analysis.

4


